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Chaos in double-barrier heterostructures
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We have found chaotic behavior in two classical systems of three particles moving on a one-
dimensional ring, where the particles interact via a nonhomogeneous Toda or Coulomb interaction.
Chaos appears due to the spatial symmetry breaking induced by the nonhomogeneous interactions.
Under certain conditions this system may be considered a classical counterpart of the quantum
double-barrier heterostructure, a system for which fingerprints of chaos in its energy spectrum were

recently found.
PACS number(s): 05.45.+b, 73.40.Gk

Recently, interest has arisen in chaotic properties of
quantum double-barrier resonant tunneling heterostruc-
tures [1]. The energy level spacing distribution was stud-
ied in Ref. [2]. When there are no interactions between
the electrons in the heterostructure, or these interactions
are homogeneous, the energy level spacing distribution
follows a Poisson distribution. For nonhomogeneous in-
teractions a Wigner distribution of the energy level spac-
ing was found. It was suggested in Ref. [2] that the barri-
ers are not the crucial factor in the transition between the
different types of distribution, and that a classical system
which has inhomogeneous interactions (but no barriers)
might capture the crucial features in the transition to
chaos of the quantum double-barrier system.

Nontrivial relations between classical and quantum
chaos are the main motivation of our study [3-8]. One
usually studies the deterministic chaos in a classical sys-
tem, and then the question arises as to the signatures of
this chaotic behavior in the quantum system. A finger-
print of the classical deterministic chaos appears in the
appropriate quantum system as a change in the energy
level spacing distribution from the Poisson distribution
for an integrable system in the classical limit to a Wigner
Gaussian orthogonal ensembles (GOE) distribution for a
system which is chaotic in that limit. The latter phe-
nomenon is usually referred to as “quantum chaos.” Re-
cently it has been shown that the appearance of a Wigner
distribution of the quantum energy level spacing does not
necessarily indicate an underlying classical chaotic dy-
namics [9-11]. Therefore, it is important to see whether
the GOE level spacing observed for the quantum double-
barrier system is accompanied by a classical chaotic be-
havior of this system.

The appearance of deterministic chaos for the classical
analog of the quantum double barrier is investigated here
using an example of a three particle system moving on a
one-dimensional ring with exponential (the Toda lattice)
or Coulomb (the Kepler system) interactions between the
particles. These systems are known to exhibit a transi-
tion to chaos once the particles have unequal masses [12,
13]. In this paper we show that similar chaotic behavior
appears once different types of interactions between par-
ticles which happen to be in different space regions are
introduced. This situation is common for heterostructure
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electronic devices where different electronic densities may
be found at different regions of the device. Since the effec-
tiveness of screening depends strongly on the electronic
density the electron-electron interactions at different re-
gions of the heterostructure have different forms. This
nonhomogeneous interaction, like transitions from equal
to unequal masses, comprises the symmetry breaking fac-
tor, which brings qualitative changes in the behavior of
the nonhomogeneous systems compared with the appro-
priate homogeneous ones with or without interactions.

It turns out that deterministic chaos appears for non-
homogeneous interactions while it is absent when the in-
teractions take place everywhere on the ring or when they
are completely absent. Hence, for the heterostructure
case the transition of the level statistics to a Wigner dis-
tribution is indeed an indication for the appearance of
“quantum chaos.”

As a first example we consider the Toda lattice, which
is one of the few known examples of an integrable system
(both in classical and quantum cases) with more than
two degrees of freedom. We consider the three body one-
dimensional Toda lattice with a Hamiltonian of the form
H = p_%+_p%_+i+e"|m—@|+e_|‘12—lI3|+e“|¢I3—qlll

2m1 2m2 2m3
(1)

For equal masses m; = my = mj3 one can construct Lax
pairs [14] and find three independent integrals of motion
for the Toda lattice [7, 14], which means that the system
described by Eq. (1) with equal masses is integrable,
i.e., does not exhibit chaotic behavior. The Toda lat-
tice and its continuum limit—the nonlinear Korteweg-de
Vries equation with soliton solutions—are examples of
integrable nonlinear systems.

Casati and Ford [12] considered the unequal mass sym-
metry breaking perturbation to the integrable solution.
They showed numerically for different energies and mass
ratios that for relatively small perturbations, in accor-
dance with the Kolmogorov-Arnold-Moser theorem [7],
the system remains nearly integrable while for large per-
turbations it shows chaotic behavior.

In contrast to Ref. [12] we keep the masses equal,
mi = mg = mz = m, but rather introduce a nonsym-
metric interaction (see Fig. 1). The solid line on the ring
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FIG.1. Schematic drawing of the ring system. The points
represent the initial positions of the particles. The angle co-
ordinate a corresponds to the angular portion of the ring in
which interactions take place, represented by the dark region
of the ring. There are no interactions in (a) (a = 0), inter-
actions everywhere in (b) (a = 2x), and interactions which
take place only in a part of the system (c) (a = 1.17).

shows the regions where the interactions occur. Hence,
Fig. 1(a) corresponds to the noninteracting case, Fig.
1(b) to the homogeneously interacting particles, while
Fig. 1(c) represents the case for which interactions be-
tween particles exist only when both particles are in the
angular region of 1.17 and are absent when any of the
particles are outside this region.

As an indication of chaos we will use, as is done in
Refs. [12, 15, 16], the phase space separation distance D
defined as

D= [ — i) + (¢} — @:)?], (2)

3
=1
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where the dotted and undotted quantities belong to two
trajectories which initially are very close to ehch other.
For integrable systems D grows as a function of time
no more than linearly while for chaotic systems D grows
exponentially. This is the well-known sensitivity to initial
conditions characteristic of chaos.

We have chosen symmetric initial positions of particles
on a ring as shown in Fig. 1, ¢? = 7/3, 4¢3 = m, ¢} =
57/3, and masses m; = my = m3z = 1. The second
trajectory is identical to the first one except for changing
the initial position of one particle ¢/3 = ¢9 + 10=%. The
total energy H of our conservative system is defined by
Eq. (1) and remains constant. Each case described in
Fig. 1 has different interaction energy; therefore, for the
same initial positions of the particles and identical masses
one has to consider different initial momenta {p?}, in
order to have the same total energy for all cases. For
H = 10, we have chosen p? = —pJ = 3.16228, pJ = 0
for the noninteracting case described in Fig. 1(a), p? =
—p3 = 3.077212437, pJ = 0 for the case of Fig. 1(b),
and p? = —p§ = 3.134179 26, pJ = 0 for Fig. 1(c).

In Fig. 2 we show typical graphs of separation dis-
tances D vs time. In the symmetric cases (the nonin-
teracting case or interactions everywhere on the ring) D
either does not grow or grows no stronger than linearly
as a function of time. On the other hand, when sym-
metry is broken, as in the case described in Fig. 1(c),

it can be seen (Fig. 2) that D grows exponentially as a
function of ¢ as is expected in a chaotic case. The process
saturates eventually because the separation is restricted
by the finite volume of the phase space available for the
particle.

For comparison we display in Fig. 2 the separation
distance D for the unequal mass case where m; = 1,
my = 0.5, and m3 = 1.5. In order to remain on the same
energy surface H = 10 as for all other curves in Fig. 2
we have chosen p§ = —p3 = 3.370917 332, and pJ = 0. It
turns out that D grows exponentially in this case showing
very similar behavior to that of the heterostructure case.

Let us now turn to the second example. Extensive
studies were conducted for three particles interacting via
Coulomb interactions (the anisotropic Kepler problem).
For the case of particles of equal masses such a system
is integrable since it has as many conserved quantities as
there are degrees of freedom. On the other hand, chaotic
behavior has been found for unequal masses of the par-
ticles [7, 8].

The Hamiltonian of three particles with Coulomb in-
teractions has the form
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FIG. 2. Separation distance D, as defined in Eq. (2), vs

time for two adjacent trajectories in phase space for the Toda
system [Eq. (1)]. For the noninteracting case (@ = 0), D is
constant. D moderately changes for particles which interact
all over the ring (a = 27). On the other hand, for the het-
erostructure case (o = 1.1w) D grows exponentially. For all
these cases the particle masses are equal. Similar exponen-
tial growth of D is observed for an unequal mass case. The
exponential growth of D is typical of chaotic behavior.
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where the exponential interactions of Eq. (1) are replaced
by Coulomb interactions.

As in the preceding section we shall consider the case of
equal masses m; = ms = mg = 1. The initial positions of
the particles are chosen as ¢ = 7/3, ¢J =, ¢? = 3n/2.
The noninteracting particles result is obviously identical
to that of the Toda lattice. For the homogeneously inter-
acting case we chose p? = —pJ = 2.8632, p3 = 0, and for
the heterostructure case p? = —pJ = 3.069, p3 = 0. Un-
der these initial conditions all these cases have the same
energy H = 10.

The typical behavior of D vs time is shown in Fig.
3 for all the different cases. These curves bear a strict
resemblance to those presented in Fig. 2 for the Toda
lattice. As expected, the specific form of interactions
has only a minor influence on the generic properties of
nonlinear systems.

The behavior of the system for a given total energy
and different interactions can be illustrated by a set of
Poincaré surfaces of sections. In Fig. 4 we show the
Poincaré section for H = 10 and the above mentioned
initial conditions. Figure 4(a) corresponds to the homo-
geneously interacting particles, while Fig. 4(b) relates to
the heterostructure case shown in Fig. 1(c). The lat-
ter case clearly exhibits chaotic behavior. Moreover, the
heterostructure system is a mixed one, i.e., its behavior
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FIG. 3. Separation distance as in Fig. 2 for the Coulomb

interaction [Eq. (3)], for equal particle masses.
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FIG. 4. Poincaré surfaces of sections for homogeneously

(a), and nonhomogeneously (b) interacting particles.

is chaotic or regular depending on the initial conditions.
For example, if one chooses the initial condition to be
symmetric with respect to the region of interaction the
motion is nonchaotic, in contrast to the case presented
in Fig. 4(b).

Let us finally turn to the quantitative analysis in terms
of the Lyapunov exponents. Let J(O) and J(t) denote the
separation vectors of two close trajectories at times 0 and
t, respectively. Then

- -

d(t) = Jd(0). (4)

The matrix J is of the order n x n, where n is the di-
mension of the phase space (in our case of three particles
n = 6). The matrix J can be diagonalized to the form

Ay (t)
J= : (5)
Ag(t)

Then A; = lim; oo In[A;(¢)]/t are called the Lyapunov
exponents, and the largest exponent A; will define the
convergence (or divergence) of the neighboring trajecto-
ries. Using the phase space plus tangent space approach
[17, 18] and the standard subroutines for finding eigen-
vectors in MAPLE V we have found that for the homoge-
neously interacting particles [Fig. 1(b)] A; = —0.006 and
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for noninteracting particles [Fig. 1(a)] Ay = 0, i.e., the
systems are nonchaotic. However, if the masses in Fig.
1(b) are nonequal or the interaction is nonhomogeneous
as in Fig. 1(c), Ay = 0.18 and 0.176, respectively. There-
fore, in the last two cases the motion of the particles is
chaotic.

One must consider the question of computer integra-
tion accuracy. To solve the Hamilton-Jacoby equations
for the Hamiltonians given in Eq. (1) and Eq. (3) we used
the Fehlberg fourth-fifth order Runge-Kutta method [19].
The tolerance of the numerical calculation for relative er-
ror of convergence was 1071°, Computations were per-
formed with 14 floating point significant digits.

Hence, we have suggested nonhomogeneous interac-
tions as a new possible source for the onset of deter-
ministic chaos in nonlinear systems. It turns out that
different interactions between particles in different space
regions result in symmetry breaking, and in the appear-
ance of chaos. As an example we have considered three
particles moving on a one-dimensional ring, with Toda or
Coulomb interactions between them. Our numerical cal-
culations clearly show that the separation between two
neighboring trajectories increases exponentially for non-
homogeneous interactions in contrast to the noninteract-
ing case, or the homogeneously interacting case. The

detailed form of the heterostructure is of no special im-
portance as long as a spatial symmetry breaking of the
interactions exists. Some exceptional cases exist in which
particles never reach, or never leave, a region for which
the interactions are different. For example, for the case
shown in Fig. 1(c) this will happen if the interaction re-
gion extends to 0 < a < 7. As there are more particles
in the systems these exceptional cases become rarer.

Nonhomogeneous interactions as a factor which in-
duces deterministic chaos are similar to unequal masses of
the particles. Symmetric cases such as equal masses and
homogeneous interactions correspond to integrable sys-
tems while unequal masses as well as nonhomogeneously
interacting particles result in chaotic trajectories in phase
space almost for all initial conditions. Finally, we have
established a simple classical counterpart to the inter-
acting quantum double barrier, supporting the claim of
Ref. [2] that the decisive factor in the appearance of
chaos in the quantum double-barrier resonant tunneling
heterostructure is the spatial symmetry breaking due to
nonhomogeneous interactions rather than the presence of
barriers.
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